Trump heads to heartland for tech push

Jonathan Easley, The Hill: Trump will visit Kirkwood Community College in Cedar Rapids, home of the nations largest two-year agricultural college program, to view the schools cutting edge "agricultural geo-spatial technology and precision farming" techniques.

AgTech - Not Just for Large Farms?

Bryan M. Eagle III for Observer: From field monitoring and equipment telematics to livestock biometrics and market access, AgTech is transforming large farms. But what about smaller farms?

Lettuce-Weeding Robots, Coming Soon to a Farm Near You

Sonya Mann for Inc.com: Blue River Technology is building machines that help farmers manage their crops more efficiently.

When Investors With No Ag Background Dive Into AgTech

AgWeb.com: An influx of investors is bringing more money to seed-stage AgTech startups. And while that is an incredible thing for the industry at large, it certainly comes with its own set of challenges.

5 precision ag technologies to watch

Catie Noyes for Farm and Dairy: The world of digital agriculture is continuing to advance before our eyes, says John Fulton, associate professor in Ohio States College of Food Agriculture and Biological Engineering.

Smart farming methods need IoT technologies

Richard Wilson for Electronics Weekly: Technologies such as IoT can be used to address the need for sustainable food production to support the current rate of population growth, according to IoT analyst firm Beecham Research.

Top 7 technologies in precision ag

Catie Noyes for Farm and Dairy: Precision agriculture and agricultural technology have come a long way in the past five to 10 years.

An Urban Farm Grows in Brooklyn

Melissa Fares for Reuters: For 12 months, farmers each get a 320-square-foot steel shipping container where they control the climate of their own farm. Under pink LED lights, they grow GMO-free greens all year round.

Piracy In The Fields: Agricultural Trade Secrets A Tempting Target

Bryan Thompson for Harvest Public Media: Agriculture today is a high-tech business, but as that technology has developed, so has the temptation to take short cuts and to steal trade secrets that could unlock huge profits.

Optical Sensors Advancing Precision in Agricultural Production

Seth Murray for Photonics.com: Emerging methods for plant phenotyping involve optical sensors - from simple RGB image sensors to NIR and Raman spectroscopy.

American Robotics Scouts Out $1.1M to Bring A.I. to Farm Drones

Frank Vinlaun for Xconomy: Drones are opening up the skies to farmers who want better ways to monitor their crops.

More Farmers Considering Drone Use

Hoosier Ag Today: A new poll finds 21 percent of farmers plan to operate a drone this year. The poll found 21 percent of farmers will operate the drone themselves, while another 12 percent of farmers indicated they would opt for a third-party entity to fly drones.

Why Robotics Will Change Agriculture

Rob Trice & Seana Day via Forbes:  Last month as our Mixing Bowl colleagues Michael Rose and An Wang were interviewing Sonny Ranaswamy of the USDAs NIFA to better understand current US food and agriculture labor issues, we were representing The Mixing Bowl in discussions on potential solutions to food production labor issues through automation and robotics. At this years RoboUniverse event in San Diego there was a full-day track on December 14th dedicated to the application of robotics to agriculture. The industry track, pulled together in great part by Nathan Dorn, CEO of Food Origins and an Advisor to The Mixing Bowl, featured a knowledgeable group of automation/robotics experts and food producers who drew on their experience to define the opportunities and sharpen focus on the challenges. Nathan authored a detailed summary of the day in a post on Agfunder. Our conclusion is that there is no denying that we are still in the early days of adoption of robotics in agriculture.  Cont'd...

Reviving Japan's Dairy Industry, One Milking Robot at a Time

Aya Takada for Bloomberg:  Jin Kawaguchiya gave up a career in finance to help revive Japans ailing dairy industry -- one robot at a time. In a country that relies increasingly on imported foods like cheese and butter, Japans milk output tumbled over two decades, touching a 30-year low in 2014. Costs rose faster than prices as the economy stagnated, eroding profit, and aging farmers quit the business because they couldnt find enough young people willing to take on the hard labor of tending to cows every day. But technology is altering that dynamic. On the northern island of Hokkaido, Japans top dairy-producing region, Kawaguchiya transformed the 20-cow farm he inherited from his father-in-law 16 years ago into Asias largest automated milking factory. Robots extract the white fluid from 360 cows three times a day and make sure the animals are fed and healthy. The machines even gather up poop and deposits it in a furnace that generates electricity.  Cont'd...

MIT Food Computers

From MIT:  The Food Computer is a controlled-environment agriculture technology platform that uses robotic systems to control and monitor climate, energy, and plant growth inside of a specialized growing chamber. Climate variables such as carbon dioxide, air temperature, humidity, dissolved oxygen, potential hydrogen, electrical conductivity, and root-zone temperature are among the many conditions that can be controlled and monitored within the growing chamber. Operational energy, water, and mineral consumption are monitored (and adjusted) through electrical meters, flow sensors, and controllable chemical dosers throughout the growth period. Each specific set of conditions can be thought of as a climate recipe, and each recipe produces unique results in the phenotypes of the plants. Plants grown under different conditions may vary in color, size, texture growth rate, yield, flavor, and nutrient density. Food Computers can even program biotic and abiotic stresses, such as an induced drought, to create desired plant-based expressions... (project homepage)

Records 301 to 315 of 318

First | Previous | Next | Last

Lighting - Featured Product

Cree LED J Series® JB3030C E & F Class White LEDs

Cree LED J Series® JB3030C E & F Class White LEDs

Introducing our cutting-edge J Series® JB3030C E & F Class White LEDs, featuring industry-leading LED efficiency up to 242 LPW or 3.33 PPF/W typical. Sharing the same high-reliability package, the two performance options of E & F Class allow luminaire manufacturers to boost performance for high efficacy lighting in outdoor areas, indoor harsh environments and horticulture applications. J Series JB3030C LEDs are an easy design choice: footprint compatible with 301B/H, available LM-80 data, and a full range of color temperatures (2700-6500K) and CRIs (70-80-90). Upgrade your lighting with unmatched performance and durability.