Finding more sustainable ways to cultivate rice crops
A team of researchers based in Europe used the Canadian Light Source to understand how to make fertilizer nutrients more available to rice plants.
SASKATOON - Rice farmers depend on phosphorous fertilizers to maximize their yields of this major staple food, which helps nourish more than half of the world's population. However, there is a finite supply of the nutrient available to be mined.
Dr. Joerg Schaller and colleagues discovered that silicon, which is also known to play a key role in growing rice, can replace phosphorus in soil and mobilize it to be available for absorption by the plants that need it. Phosphorus binds to iron in soil, rendering it unavailable to plants.
"If all the building places are occupied with silicon, there is no space for phosphate to bind (in the soil). It means you need only half of the fertilizer," said Schaller, who is with the Leibniz Centre for Agricultural Landscape Research (ZALF).
By taking multiple soil samples from rice paddies that have been used to cultivate rice for between 50 and 2,000 years and examining them using scanning transmission X-ray microscopy at the CLS, Schaller and his colleagues were able to better understand how and why silicon and phosphorus bond to the soil.
The wide range of paddy soil gave Schaller's team a precise look at how long it takes soil to be depleted of silicon and saturated with phosphorus.
"It's really valuable (to be able to study so many samples)," said Schaller. "Rice cultivation, they've done it for a really long time…it's really interesting, to use such samples."
Because phosphorus is critical to the growth of rice and so many other crops, finding a more sustainable solution to promoting rice growth — like using cheaper and more available silicon-based fertilizers to prevent phosphorus saturation — is critical for the world's food supply.
"This is really important for humankind," Schaller said. "If we could decrease the need for phosphorus fertilization, this is a really important thing."
More CLS science highlights
The Canadian Light Source (CLS) is a national research facility of the University of Saskatchewan and one of the largest science projects in Canada's history. More than 1,000 academic, government and industry scientists from around the world use the CLS every year in innovative health, agriculture, environment, and advanced materials research.
The Canada Foundation for Innovation, Natural Sciences and Engineering Research Council, Canadian Institutes of Health Research, the Government of Saskatchewan, and the University of Saskatchewan fund CLS operations.
Featured Product
Advanced Mid-Power and High-Power LEDs for Horticulture Lighting
Cree LED's J Series® family offers a comprehensive portfolio of mid-power and high-power LEDs engineered specifically for horticulture lighting. The lineup includes high-efficacy 2835, 3030 and 5050 platforms designed to maximize photon output, energy efficiency, and long-term reliability in demanding grow environments. Photophyll™ Select options in the JB3030C and 2835 platforms deliver industry-leading efficiency with excellent sulfur resistance and footprint compatibility with 301B/H devices - making design-in seamless for horticulture luminaires. The 2835 N-Class color portfolio adds even greater flexibility with 15 high-efficacy spectral options that support precise spectrum tuning. For high-power applications, the JR5050C provides the industry's highest efficacy in its class and can reduce system costs by up to 40%. The JR5050B complements this with best-in-class efficacy in both 6V and 30V configurations. The J Series portfolio also features top-performing white LEDs. The JB3030C delivers up to 3.33 PPF/W (typical), while the JB2835B offers the highest efficacy available in a 2835 white platform. Together, these solutions give horticulture lighting manufacturers exceptional efficiency, broad spectral versatility and unmatched design flexibility.
