Although they promise streamlined farming operations, higher yields and greater costs savings for growers, how much of AI and machine learning in agriculture today is more hype than reality?

Artificial Intelligence And Machine Learning In Agriculture Today
Artificial Intelligence And Machine Learning In Agriculture Today

Rebecca Sakayeda | Iteris, Inc.

Reprinted with permission from Iteris, Inc.:

Artificial Intelligence (AI) and machine learning are terms garnering lots of attention these days, in many industries, including agriculture.  And although they promise streamlined farming operations, higher yields and greater costs savings for growers, how much of AI and machine learning in agriculture today is more hype than reality? 

We posed these questions to Jim Chambers, senior vice president and general manager of Iteris’ Agriculture and Weather Analytics division:


How are AI and machine learning used in agriculture today?

AI and machine learning are used in a number of agricultural applications today. Examples include yield prediction algorithms based on weather and historical yield data; image recognition algorithms to detect pest and diseases in plants; and robotics to harvest different types of specialty crops. So, it’s a growing technology that has increasingly important applications to improve agricultural processes. 

What are some of the challenges and roadblocks to implementing AI and machine learning in agriculture?  

There are a few. First, in agriculture, it’s important to understand that machine learning, like other technologies, is a part of a process, not a stand-alone solution. AI must provide practical applications that align with existing agricultural operations. 

Next, machine learning requires lots of data around user or producer inputs, or patterns such as the migration of pests for example. Large gaps in data collection, preparation, and benchmarking capabilities exist today. This makes modeling a challenge. 

Part of the “hype” of AI and machine learning stems from the fact that start-ups – many with little or no agriculture experience or background – use lean methods to get their technologies to market quickly, without understanding implications of the gaps in data. In addition, farmers are cautious to adopt new technologies because they don’t want to risk unproven technologies on their farms. 

Is Iteris using AI and machine learning today? And if so, how?

Because of our team’s deep agronomic, atmospheric, soil and data science expertise, we’ve taken a very practical approach to AI and machine learning. Our applications are based on advanced diagnostic and predictive analytics and ground-truthed agronomic models. Our technology was built, right from the start, for machine learning. We focus on real-world challenges faced by agribusinesses and their grower customers.

Our AI and machine learnings applications include: 

  • Irrigation and Water Management: Understanding how soil moisture responds to irrigation events with different crops, soils, environmental conditions. When tied to an irrigation control system, this information can automatically implement control strategies that help minimize water usage, manage nutrient losses, or achieve more desirable or uniform soil moisture throughout the field. 
  • Crop Modeling: We apply artificial intelligence to crop modeling, generating a predictive crop model for use in stage-dependent field operations. Combined with producer feedback on crop growth stages, the model re-calibrates and refines itself.  Where no phenological models have yet been developed, ClearAg employs a Neural Network technique to develop predictive models from past observed crop data by combining with our extensive historical weather data. 
  • Field Accessibility: We apply machine learning techniques to determine how accessible a field is for equipment to help producers make informed decisions for operational efficiency without knowing the growers’ specific equipment or operational practices.
  • Harvest Decision Support: Crop moisture content models are developed using machine learning to combine observed moisture values with historical weather, and then applied in predictive mode.
  • Weather Forecast Model Calibration: The individual numerical weather models feeding our proprietary ensemble forecast system are auto-calibrated using past performance against ground truth data and dynamically weighted.


The content & opinions in this article are the author’s and do not necessarily represent the views of AgriTechTomorrow
Iteris, Inc. - Contributing Author

Iteris, Inc. - Contributing Author

Iteris, Inc. (Iteris) is the global leader in applied informatics for transportation and agriculture, turning big data into big breakthrough solutions to create better communities. We collect, aggregate and analyze data on traffic, roads, weather, water, soil and crops to generate actionable insights that lead to safer transportation and smarter farming. Municipalities and government agencies use our transportation solutions for safer and more efficient mobility. Crop science companies, farmers and agronomists around the world use our agriculture solutions for sustainable and more productive farming. Relevant and accurate weather and soil data and predictive analytics are among the most critical components to healthy crop growth, wherever crops are grown, anywhere in the world.

Other Articles

What Roles Will AI And Machine Learning Have In Feeding The World?
Models and data analytics not only recap what is already occurring between water and plants across expansive rows of corn, they can actually predict what will come in the hours, days and weeks ahead.
Artificial Intelligence And Its Uses In Ag Irrigation
Do you have a problem that AI might be able to solve? If so, have you started collecting the data that might be needed? The sooner you get started, the sooner you might be able to see the benefits.
Rainfall Revisited: Accurate Observations And Beyond
Accurate observations are important and useful, but one must also get to the root of what the real problem is, understand all the sources of uncertainty, and understand that modeling techniques offer a consistent approach to filling in gaps
More about Iteris, Inc. - Contributing Author

Comments (0)

This post does not have any comments. Be the first to leave a comment below.

Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Sierra Instruments, Inc.- InnovaMass. Reinvented.

Sierra Instruments, Inc.- InnovaMass. Reinvented.

Sierra was the first to introduce a combination volumetric vortex and multivariable mass flow meter in 1997. Today, Sierra's completely redesigned InnovaMass® iSeries™ 240i/241i builds on two decades of success measuring five process variables for gas, liquid and steam with one connection. Now, with the latest hyper-fast microprocessors, robust software applications, field diagnostic and adjustment capability, and a new state-of-the-art flow calibration facility, Sierra's vortex iSeries delivers precision, performance, and application flexibility never before possible.