As we move from spring to summer, an interesting question arises: should those hoping for big corn yields this fall be cheering for a cooler- or warmer-than-normal summer?

Some Like it Hot, Most Not
Some Like it Hot, Most Not

John Mewes | Iteris

 

In a previous article we looked at the impacts of cold spring weather and delayed planting on corn yields across the U.S. corn belt.  As we move from spring to summer, an interesting follow-up question arises: should those hoping for big yields this fall be cheering for a cooler- or warmer-than-normal summer?

To answer this question, we can access county-level historical corn yield data from the USDA National Agricultural Statistics Service (NASS), and then look for correlations between these yields and the deviations of monthly temperatures from the climatological normals for each county. Given the steady increase in corn yields over time, we must first remove the effect of these upward trends from the county yield data before calculating correlations. The 1980-2017 temperature data required for this exercise were extracted from the ClearAg Field Weather API service.

The results of this analysis are depicted in Figure 1. The counties that are colored typically produce 90% of the U.S. corn crop. Note that the years with the highest and lowest temperatures for any given month were excluded from the correlation calculations depicted in Figure 1, as were the years with the highest and lowest detrended yield for each county. These exclusions were intended to limit the impacts of years that are potentially significant outliers on the calculated correlation coefficients.

Figure 1:  The county-by-county correlations between the final corn yield and the monthly temperature deviations, for the months of May, June, July and August, for the major corn-producing counties of the United States. The correlation coefficients indicated were calculated across the years 1980-2017.  Positive correlation coefficients (green shades) indicate counties where warmer-than-average weather is typically associated with higher corn yields, and vice-versa.

In Figure 1, positive correlation coefficients (green shades) indicate counties where warmer-than-average weather is typically associated with above-trendline corn yields, while negative correlations (red shades) indicate counties where warmer-than-average weather is typically associated with below-trendline corn yields. We can see from Figure 1 that warmer-than-average temperatures in May are associated with better corn yields nearly everywhere (evidenced by the relative abundance of green shades relative to red shades). As the calendar turns to June and then July, however, warmer-than-average temperatures become detrimental to corn yields in all but a corridor from Wisconsin northwestward through North Dakota, and a handful of counties in and around the high plains of Colorado. Hot August weather is detrimental to corn yields nearly everywhere, with the most pronounced correlations with reduced yields lying in the vicinity of southeastern Nebraska and southwestern Iowa.

Here’s to hoping you get a summer that helps pad your pocketbook!

 
The content & opinions in this article are the author’s and do not necessarily represent the views of AgriTechTomorrow
Iteris, Inc. - Contributing Author

Iteris, Inc. - Contributing Author

Iteris, Inc. (Iteris) is the global leader in applied informatics for transportation and agriculture, turning big data into big breakthrough solutions to create better communities. We collect, aggregate and analyze data on traffic, roads, weather, water, soil and crops to generate actionable insights that lead to safer transportation and smarter farming. Municipalities and government agencies use our transportation solutions for safer and more efficient mobility. Crop science companies, farmers and agronomists around the world use our agriculture solutions for sustainable and more productive farming. Relevant and accurate weather and soil data and predictive analytics are among the most critical components to healthy crop growth, wherever crops are grown, anywhere in the world.

Other Articles

Rainfall Revisited: Accurate Observations And Beyond
Accurate observations are important and useful, but one must also get to the root of what the real problem is, understand all the sources of uncertainty, and understand that modeling techniques offer a consistent approach to filling in gaps
How Machine Learning Plus Weather Information Can Help Us Feed The World
Even if we had perfect weather data everywhere all the time, there are many more uncertainties in a lot of the weather-driven agronomic models that attempt to predict crop stage, disease pressure, and crop performance
A Look At Irrigation Management Practices In Nebraska
Running sprinklers on the right, impending downpours on the left – color me confused. Why would growers, who are much more knowledgeable about their crops, put down water when thunderstorms are rumbling on the horizon?
More about Iteris, Inc. - Contributing Author

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

EDF RENEWABLE SERVICES OFFERS ASSET MANAGEMENT SOLUTIONS WITH AN OWNER’S PERSPECTIVE

EDF RENEWABLE SERVICES OFFERS ASSET MANAGEMENT SOLUTIONS WITH AN OWNER'S PERSPECTIVE

EDF Renewable Services offers the same innovative solutions that maximize the performance of our own 5.2 GW of installed projects. Because we're not an equipment manufacturer, our recommendations are transparent and data-driven. We cover the entire project lifecycle: from pre-commissioning support, through warranty and post warranty operation, to late stage and decommissioning.